КАТАЛОГ ТОВАРОВ
Блог / Новости
НОВИНКА! Protherm Panthera
Выбор котла
АКЦИЯ!
BERETTA CITY
25.08.2012 15:05:08
22.07.2012 11:14:45
24.07.2010 17:31:35
12.07.2010 12:18:43
12.07.2010 12:16:10
12.07.2010 12:12:33
12.07.2010 12:09:43
12.07.2010 11:51:33
17.02.2010 18:21:27
17.02.2010 18:19:21
17.02.2010 18:16:24
17.02.2010 18:09:10
Подписаться на новости:
или RSS 2.0
ВАС ПРИВЕТСТВУЕТ ИНТЕРНЕТ - МАГАЗИН ОТОПИТЕЛЬНОЙ ТЕХНИКИ TEPLOSHARA.com УКРАИНА КИЕВ

Блог / Новости RSS 2.0

Подпольное отопление — тепло у ваших ног!

Система KAN-therm служит для создания современного оборудования водоснабжения и отопления. Одним из престижных решений есть современная и удобная для клиентов система подпольного отопления. В ответ на бурный рост заинтересованности этим типом отопления Система KAN-therm постоянно расширяет перечень предлагаемой продукции, внедряя новые решения.

Подпольное отопление, смонтированное в Системе KAN-therm , пользуется большим успехом в индивидуальном строительстве (жилые помещения и ванные), в жилом многоэтажном строительстве, на объектах спортивного, промышленного и общественного назначения.

Подпольное отопление в Системе KAN-therm — это:

  • оптимальное распределение температуры в помещении (тепло генерируется в зонах помещения, в которых мы чаще всего бываем);
  • экономия энергии до 12%, возможность взаимодействия с экономичными источниками тепла, например, солнечными коллекторами и тепловыми насосами;
  • максимальное использование поверхности помещений. Система рекомендована для аллергиков ввиду отсутствия переноса пыли;
  • может использоваться в течение всего года (летом — для охлаждения помещений).

Монтаж системы подпольного отопления в Системе KAN-therm выполняется достаточно просто и быстро! Мы поставляем проверенную продукцию высокого качества, на которую даем гарантию. Широкий ассортимент материалов в Системе KAN-therm позволяет выбрать оптимальное и экономичное решение.

Основным нагревательным элементом водяной системы подпольного отопления являются полимерные трубы (1), крепящиеся к тепловой изоляции (к пенополистирольным плитам). Затем эти трубы заливаются слоем цементного раствора. В зависимости от требуемой тепловой мощности подпольного отопления применяются трубы с диаметрами ∅ 16 или ∅ 18 мм с шагом через каждые 10-30 см. Краевая лента (2) используется с целью ограничения потерь тепла через стены.

Роль теплоизоляции и гидроизоляции (3) выполняет системная пенополистирольная плита с пленкой. Пенополистирол применяется с целью ограничения потерь тепла через перекрытие («вниз»), а пленка защищает пол от излишней сырости и представляет собой экран, равномерно распределяющий тепло. Бетонная плита (4), т.е. цементная заливка, прикрывающая греющие трубы, должна иметь толщину min 4,5 см над трубами. С целью улучшения ее термических свойств рекомендуется применять пластификатор для бетона BETOKAN или BETOKAN Plus (позволяет сократить толщину заливки над трубами до 2,5 см). Важным элементом системы является правильный подбор распределителя и автоматики (5), управляющей параметрами работы подпольного отопления. Распределители помещаются в эстетичные монтажные шкафчики (6), встраиваемые или наружные.

Солнечно-электрическая система аккумуляционного теплоснабжения

В настоящее время как учёных, инженеров-теплоэнергетиков, практиков (проектировщиков, монтажников, эксплуатационников), так и рядовых граждан интересуют вопросы энергосбережения, которые становятся ключевыми. И это неудивительно, без преувеличения можно сказать, что человечество стоит на пороге энергетического кризиса. Цены на нефть и газ очень часто становятся «героями» информационных блоков новостей. Учитывая последнее резкое повышение цен на коммунальные услуги на Украине, многие понимают, что от цены на газ и нефть зависит их личное благосостояние и благосостояние общества в целом. Aктуальность и злободневность проблемы очевидна всем.

В условиях, когда в массе городов разрушена система централизованного теплоснабжения, её восстановление часто экономически нецелесообразно. Восстановление больших котелен и тепловых сетей, при отсутствии эксплуатации последних на протяжении нескольких лет, требует значительных, а часто экономически необоснованных капитальных затрат.

В связи с наличием в Украине большого количества атомных электростанций, значительно возросла установленная мощность энергетического оборудования, которое функционирует в базисном режиме, что при значительной суточной неравномерности электропотребления вызывает необходимость внедрения ряда мероприятий по обеспечению устойчивого режима электроэнергетической системы. В связи с этим, в настоящее время актуальны разработки систем теплоаккумуляционного электротеплоснабжения, которые аккумулируют энергию в часы провалов в графиках электрических нагрузок.

Закон Украины «Об энергосбережении» определяет экономические мероприятия для обеспечения и пути стимулирования энергосбережения, взаимную экономическую ответственность поставщиков и потребителей топливно-энергетических ресурсов (ТЭР), экономичекие санкции за неэффективное их использование. В нем предусмотрены пути финансирования мероприятий относительно экономии и р ационального использования ТЭР.

В ряду первоочередных задач главное место занимает внедрение систем теплоснабжения с применением возобновляемых источников энергии.

Проблема создания эффективной системы солнечно-электрического теплоснабжения имеет сложный многофакторный характер, а также несет на себе нагрузку всего разнообразия форм и направлений использования энергии.

С целью эффективного использования установленного оборудования и увеличения объёмов экономии топливно-энергетических ресурсов, разработка и внедрение солнечно-электрических аккумуляционных систем теплоснабжения является очень актуальной в настоящее время.

Известна масса различных вариантов организации внедрения солнечно-электрического теплоснабжения. Один из них — ичспользование электроэнергии в часы провалов нагрузок на энергосистему, а также использование льготной оплаты в тарифах (которая для Киева выглядит так: «пиковая» зона — 0,65 грн за 1 кВт, «полупиковая» зона — 0,372 грн, «ночная» зона — 0,09 грн.). Такая схема позволяет снизить стоимость внедрения системы для конкретного потребителя , а также затраты на её эксплуатацию.

В правительстве Украины также есть понимание, что электроотопление выгодно экономически и экологично (Распоряжение Кабинета министров от 28 сентября 2006 г.№502-р).

Самые разумные потребители понимают, что система с низким энергопотреблением и дешевым обслуживанием — это удачное вложение капитала.

Комбинированное использование энергии солнца повышает эффективность внедряемой системы.

Отличие предложенной системы состоит в суммировании эффективности использования трех взаимосвязанных источников теплоснабжения: гелиосистема, электрокотел и тепловой насос.

Внедрение в Украине систем круглогодичного децентрализованного комбинированного солнечно-электрического электроаккумуляционного теплоснабжения зданий и сооружений позволит решить следующие задачи:

❏ использование электрической энергии в ночное время;

❏ улучшение работы энергосистемы в ночном провале нагрузок энергосистемы;

❏ покрытие 20-50% дефицита топлива за счёт внедрения возобновляемых источников энергии (тепловые насосы и солнечные коллекторы);

❏ внедрение высокоэффективных автономных источников теплоснабжения обеспечит сокращение потребление топлива на 30-40%, а сокращение капитальных затрат на восстановление теплоснабжения объекта больше чем в 2 раза (отпадает потребность в восстановлении тепловых сетей).

Основными мотивами инициирования Проекта были:

❏ рост цен на энергоносители;

❏ дефицит теплогенерирующих мощностей и неудовлетворительное качество услуг с теплоснабжения;

❏ нерентабельное использование тепловой энергии при централизованном теплоснабжении, что оказывает значительное воздействие на цену тепловой энергии у конечного потребителя.

Реализация Проекта имеет положительное влияние на окружающую среду благодаря уменьшению выбросов вредных веществ в атмосферу, вследствии сокращения потребления тепловой энергии от централизованного теплоснабжения и соответствующего снижения использования топлива теплогенерирующими мощностями, а главное — внедрением возобновляемых источников энергии.

Особенностью данного Проекта является комбинирование двух источников электроаккумуляционного теплоснабжения — это тепловой насос и электрокотел.

На данном объекте, электрокотел работает как вторая ступень теплового насоса (когда мощности теплового насоса недостаточно) и включается по таймеру только в часы провалов в графиках электрических нагрузок («ночной» тариф).

Комбинированная система солнечно-электрического аккумуляционного теплоснабжения (КСАС) предназначена для обеспечения 3-х зданий усадьбы площадью 250 м 2 отоплением, гарячим водоснабжением, охлаждением, а также подогревом воды в бассейне.

Нагрузка на отопление — 22 кВт;

Нагрузка на ГВС — 5 кВт;

Нагрузка на подогрев воды в бассейне — 10 кВт;

Нагрузка на охлаждение — 18 кВт.

Предлагаемое техническое решение состоит в следующем.

В теплопункте здания устанавливаются электрокотел, тепловой насос и комбинированный буфер-накопитель.

На крыше устанавливаются солнечные коллекторы (гелиосистема). Площадь гелиосистемы зависит от нагрузки на нужды ГВС и на подогрев воды в бассейне, а также климатических условиях местности, где расположен объект внедрения.

Исходя из расчётов, для покрытия тепловых нагрузок и экономии энергоносителей, принято следующее базовое оборудование:

❏ Солнечный коллектор — 6 шт;

❏ Буфер-накопитель ёмкостью 1500 л — 1 шт;

❏ Тепловой насос мощностью 18 кВт — 1шт.

❏ Электрокотел мощностью 20 кВт — 1шт.

Краткая техническая характеристика солнечных коллекторов, которые задействованы в системе:

❚ коэффициент полезного действия (КПД) — 84%;

❚ коэффициенты тепловых потерь К1 = 3,36 Вт/(м 2 . К), К2 = 0,013 Вт/(м 2 . К);

❚ теплоёмкость коллектора — 6,4 кДж/(м 2 . К);

❚ масса коллектора — 60 кг, объем теплоносителя — 2,2 л.

Главный компонент солнечного коллектора — медный поглотитель с гелиотитановым покрытием, который обеспечивает высокий уровень поглощения солнечной энергии и характеризуется незначительным уровнем тепловых потерь. На поглотителе установлена медная трубка, через которую протекает теплоноситель. Теплоноситель через медную трубку отбирает тепло от поглотителя, который защищен корпусом коллектора (с усиленной теплоизоляцией), тем самым обеспечивая минимальные потери тепла коллектора. Коллектор покрыт гелиостеклом с низким составом железа, что позволяет снизить потери тепла в окружающую среду.

Технологическая схема и подбор оборудования разработан с учетом технических характеристик оборудования, климатических данных, ориентации здания и соответсвенно ориентация установки солнечных коллекторов, сезонность использования коллекторов, система автоматизации, которая контролирует параметры и обеспечивает комфортные условия проживания, при этом оптимизируя эксплуатационные затраты.

Комбинированная система солнечно-электрического аккумуляционного теплоснабжения (КСАС) функционирует в автоматическом режиме и после наладки не требует вмешательства в её работу.

Учитывая, что имеющаяся система теплоснабжения имеет три режима эксплуатации (режим накопления тепловой энергии, рабочий режим и «экономичный» режим), с целью снижения потребления энергоносителей по заданному на контроллере алгоритму построены режимы накопления и расхода тепловой энергии на потребности отопления, подогрева воды в бассейне и ГВС.

Технологическая схема теплохладоснабжения

Комбинированная система солнечно-электрического аккумуляционного теплоснабжения (КСАС) приведена на рис. 1 и функционирует следующим образом.

Накопление тепла в Буфере-накопителе (БН) происходит от 3-х источников теплоснабжения: гелиосистемы, теплового насоса и котла.

■ Тепловая енергия в БН (3) накапливается с помощью солнечной энергии. Если разница температур, которая регистрируется датчиком температуры солнечного коллектора и датчиком температуры, установленным в нижней части БН (3), превышает установленную на контроллере температуру, то включается циркуляционный насос гелиоконтура (13) — происходит накопление тепла в БН (3). Отключение гелиосистемы происходит при достижении температуры, которая измеряется датчиком температуры БН (3), установленным на контроллере значения .

■ Тепловой насос (ТНУ) (1) вступает в работу, когда температура, измеряемая датчиком температуры БН(3), ниже установленной на контроллере. Отключение ТНУ (1) происходит при достижении температуры, измеряемой датчиком температуры БН (3), выше установленной на контроллере. Тепловой насос (ТНУ) (1) включается по таймеру в часы «провалов» в тарифах — это «полупиковая» и «ночная» зоны.

■ Котел (2) вступает в работу по таймеру в часы «провалов» в тарифах на электроэнергию только в «ночной» зоне в случае, когда температура, измеряемая верхним датчиком температуры БН (3), ниже установленной на контроллере, при этом вступает в работу тепловой насос (1). Если через отрезок времени, выставленный на контроллере, когда температура, измеряемая верхним датчиком температуры БН (3), не достигнет заданной величины, вступает в работу электрокотел — происходит аккумулирование тепловой энергии в ночные часы.

Отключение котла (2) происходит, когда температура, измеряемая датчиком температуры БН (3) достигнет установленной контроллером температуры.

■ В случае, когда температура, измеряемая верхним датчиком БН (3), выше заданного на контроллере значения температуры (нагрев БН (3) гелиосистемой достаточен), ни ТНУ (1), ни котел (2) не вступают в работу. В этом случае система теплопотребления обеспечиваетя теплом от БН (3).

Cистема отопления

Отбор тепла, при необходимости, происходит от БН (3). При этом включаются насосы (4) и (5). На отопительные приборы тепло поступает от БН (3). Регулирование температуры теплоносителя в системе отопления — централизованное (погодозависимое регулирование) и местное (на отопительных приборах). Если температура в БН (3) выше, чем необходимо в системе отопления, то путем подмешивания теплоносителя из обратного трубопровода системы отопления поддерживается необходимая температура на отопительных приборах.

Горячее водоснабжение

Отбор тепла для нужд ГВС происходит от БН (3). Температура в контуре ГВС в межотопительный период обеспечивается гелиосистемой и ТНУ (1), а в отопительный период — гелиосистемой, котлом (2) и ТНУ (1).

Охлаждение помещений

Летом охлаждение помещений здания происходит использованием функции теплового насоса (1) «natural cooling», путем непосредственного использования теплоёмкости грунта с температурой 8-12 °С в качестве источника «натурального охлаждения» помещений, не включая компрессор ТНУ (1).

При этом включается насос первичного контура ТНУ (1), а трехходовой клапан с электроприводом (9), устанавливается в положение «АВ — В». При условии, когда холода грунта недостаточно (нештатные климатические и эксплуатационные ситуации), включается компрессор ТНУ (1), и рассол из скважин дополнительно охлаждается тепловым насосом.

Нагрев воды для плавательного бассейна

Отбор тепла для нужд бассейна происходит от гелиосистемы, когда последняя нагрела воду для нужд ГВС. При этом трехходовой клапан с электроприводом (10) устанавливается в положение «А — В». Отбор тепла от гелиосистемы происходит от скоростного теплообменника (6) при включении насоса контура нагрева бассейна.

При недостаточной интенсивности солнечной радиации для нужд бассейна, бассейн догревается от БН (3). Отбор тепла от БН (3) происходит через скоростной теплообменник (7) при включении насоса контура бассейна.

Учёт теплопотребления квартир

Наболевший вопрос населения: «Когда мы будем платить за то, что потребляем?», — с ростом стоимости коммунальных услуг становится все более актуальным. Сегодня, в подавляющем большинстве случаев, населению не предоставлена возможность самостоятельного решения и контроля по потреблению килокалорий системой отопления квартиры. Отсюда возмущения и недоверие к платежкам, отсюда и отсутствие мотивированной взаимосвязи у населения между осуществляемыми переделками в квартире и уменьшением стоимости коммунальных услуг. Как результат — неосознанное несанкционированное вмешательство населения в систему отопления, которое способствует еще большему энергопотреблению и росту стоимости коммунальных услуг.

Есть ли выход со сложившейся ситуации? Безусловно, — есть: система отопления квартиры должна иметь теплосчетчик. Однако понимание этого приходит не сразу и не всегда. Порой уходят годы бесполезно затраченных усилий на нормативное, техническое и социальное решение вопроса.

Если рассматривать историю развития поквартирного учета в Украине, то с 1996 г. в п. 3.13 изм. № 1 к СНиП 2.04.05-91 [1] появилось требование: «Самостоятельные системы (ветви систем) отопления зданий, обогревающие обособленную группу помещений, в том числе и квартиру в многоэтажном доме должны проектироваться с приборами некоммерческого учета расхода теплоты. При количественном регулировании теплового потока в самостоятельных системах (ветвях) в качестве прибора некоммерческого учета допускается использование горячеводного водосчетчика » . Данная норма была шагом вперед, поскольку обязывала применять поквартирный учет теплопотребления. В то же время, использование горячеводных счетчиков не оправдало возлагаемых надежд. Их устанавливали непосредственно в квартирах. Это привело к тому, что население умудрилось перекручивать показания счетчиков в обратном направлении (oпустим техническую детализацию этого процесса).

Затрудненный доступ в квартиры (ст. 30 Конституции Украины разрешает доступ в квартиру только по мотивированному решению суда) усложнил контроль и достоверность определения теплопотребления. Ситуацию усугубило несоблюдение теплосетями температурного графика, что справедливо вызвало критику и возмущение населения относительно оплаты объема теплоносителя, который не несет в себе необходимого количества теплоты.

По истечению трех лет пересмотрели требования СНиП 2.04.05-91. В изм. № 2 [2], действующих поныне, п. 3.13: «Ветви систем отопления зданий, обогревающие обособленную группу помещений, в том числе квартиру в многоэтажном доме, должны проектироваться с групповыми приборами некоммерческого учета расхода теплоты . Необходимость разделения систем на ветви с групповыми приборами учета определяется заданием на проектирование » . Этой нормой сделали еще один шаг вперед, изъяв допустимость применения горячеводных счетчиков и обязав применять теплосчетчики, и возвратились на два шага назад, поставив поквартирный учет в зависимость от задания на проектирование, т. е. — в необязательность. Задание на проектирование, оказалось, по правовому статусу выше строительной нормы.

Прошло еще шесть лет, и теперь имеем очередной вариант нормирования поквартирного учета, закрепленный в п. 5.26 ДБН В.2.2-15-2005 [3], — «Квартирные горизонтальные системы отопления должны проектироваться при централизованном теплоснабжении — согласно заданию на проектирование, регламентирующему устройство поквартирного учета теплопотребления. В остальных случаях необходимо проектировать вертикальные однотрубные или двухтрубные системы отопления». Т. е., если обязывается («регламентировать» — строго устанавливать что-либо [4]) техническим заданием применить поквартирный учет, то надо проектировать систему отопления с поквартирными приборными ветками. И вновь техническое задание посредством указания на выбор системы отопления, а не желание населения, является определяющим для предоставления возможности учета теплопотребления квартиры. К тому же, данной нормой при использовании вертикальных систем отопления такая возможность вообще не предусмотрена. Конечно, зная о перегревах и недогревах квартир при вертикальных системах, особенно с шаровыми кранами на отопительных приборах (все это было продемонстрировано участникам выставки «Аква-Tерм 2007» на гидравлическом стенде), понимаешь, что возможность учета тепловой энергии в вертикальных системах и не должна была появиться в норме, чтобы не вызывать лишних вопросов у населения.

Кроме того, в указанной норме не определяется каковым должен быть учет — коммерческим или некоммерческим.

Таким образом, две вышеупомянутые строительные нормы не дают однозначного определения по применению приборов поквартирного учета в качестве коммерческого. А ведь поквартирные теплосчетчики уже имеют для этого достаточную точность измерения. Безусловно, уже сегодня необходимо начинать корректировать нормативы с отражением современного технического уровня и потребности населения в учете теплопотребления квартир.

Возможно ли осуществить учет независимо от разводки системы? Технически — да. Практически — у нас довольно сложно. Это относится не только к новому строительству, но и к существующим жилым зданиям. За рубежом применяют распределители теплоты, устанавливаемые на каждом отопительном приборе.

Причем распределители испарительного типа уже отжили свое время. Используют только электронную версию. По такому пути идет в настоящее время Россия.

На выходе уже Стандарт АВОК «Организация центрального и индивидуального (поквартирного) учета и регулирования тепловой энергии в системах отопления жилых зданий и схем взаиморасчетов с потребителями» на основе EN 834 [5]. Показания распределителей передаются внутри дома радиоволнами, а из дома — по кабельным либо GSM сетям.

Компании, организующие учет теплопотребления, совместно со счетчиками распределителями обязательно устанавливают терморегуляторы на отопительных приборах. Поскольку именно такая минимальная совокупность технического оборудования позволяет экономить до 40%, а в особо успешных случаях — до 60%, энергоресурсов. Украина к аналогичному шагу не готова: отсутствует действенный контроль по соблюдению строительных норм, обязывающих установку терморегуляторов в новых зданиях, а в старых — терморегуляторов нет вовсе. По оценкам специалистов, стоимость реализации такого вида учета, в пересчете на 2-3 комнатную квартиру составляет около 180 евро. Как видим, это вполне сопоставимо со стоимостью другого технического решения, уже активно применяемого во вновь строящихся зданиях, — теплосчетчика на горизонтальной приборной ветке квартиры.

Прошедшее десятилетие не прошло даром. Получен опыт. Наработаны и реализованы различные проектные решения поквартирного учета. Все они относятся к системам отопления с поквартирными приборными ветками. Применение счетчиков-распределителей на радиаторах не получило у нас развития изза невозможности доступа в квартиру, невозможности корректного учета теплопотребления комбинированных систем (например, радиаторов и электрока бельных теплых полов), отсутствия государственной поддержки…

Подавляющее большинство проектируемых современных систем — горизонтальные двухтрубные с регуляторами перепада давления на квартиру, где, безусловно, применяют теплосчетчики. Такие системы великолепно зарекомендовали себя, как наименее зависимые от влияния негативных факторов, в том числе от несанкционированного вмешательства пользователей.

Еще один полученный положительный опыт — присоединение квартирных веток в местах общего пользования — коридоре, лестничной клетке, холле и т.д., по аналогии с электросчетчиками. Такое решение позволило эксплуатировать систему без доступа в квартиру: осуществлять наладку, отключать, контролировать теплопотребление, выявлять несанкционированное вмешательство…

При этом проектируют различные схемы присоединения поквартирных веток, основные из которых показаны на рисунке .

Image

Прежде всего, необходимо отметить, что не следует искать эти рисунки в программе «Данфосс С.О.» и ей подобных, как готовые узлы. Они прорисованы вручную для понимания функциональных взаимосвязей. Так, регулятор перепада давления и клапан-спутник (запорно-измерительный клапан) соединены между собой спиралевидной линией, означающей капиллярную трубку; теплосчетчик связан пунктирной линией розового цвета (означает кабель) с датчиком температуры на обратном трубопроводе. Датчик устанавливают в тройник, который не показан. Особое внимание, при использовании теплосчетчиков «Sonometer», следует обратить на место его расположения — на подающем трубопроводе , как того требует производитель. Датчик температуры теплоносителя, подаваемого в квартиру, встроен в корпус теплосчетчика и установлен внутри регулируемого участка для удобства обслуживания. Кроме того, теплосчетчик не требует никаких стабилизирующих участков трубопровода для выравнивания профиля скорости теплоносителя. Его вкручивают непосредственно в шаровой кран с одной стороны и сетчатый фильтр — с другой.

Особое внимание необходимо обратить на размещение узла учета относительно регулируемого участка. Для приближения пропорционального (идеального) регулирования тепловым комфортом помещения и достижения максимального энергосбережения узел учета с фильтром должен находиться за пределами регулируемого участка , т. е. — до запорно-измерительного клапана (ASVM).

Тогда в регулируемый участок — от запорно-измерительного клапана, отбирающего импульс давления теплоносителя, до регулятора перепада давления (ASV-P/PV) — входят лишь трубопроводы, терморегулятор и радиатор. Результатом будет обеспечение внешних авторитетов терморегуляторов выше 0,5 и их настроек выше «4». В итоге: терморегуляторы управляют отопительными приборами в соответствии (пропорционально) изменению тепловой обстановки в помещении. Появляется возможность не только уменьшения температуры воздуха в помещении, но и некоторого ее увеличения. Это особенно важно при несоблюдении теплосетями температурного графика, при наличии детей, пожилых и больных в жилых помещениях. По сути, — важно всегда. Из представленных схем, указанные возможности отсутствуют на рис. д) , поскольку узел учета и фильтр отбирает на себя значительную часть располагаемого давления регулируемого участка, уменьшая внешние авторитеты и настройки терморегуляторов. Такая возможность отсутствует и в системах с ручными балансировочными клапанами, и в однотрубных системах.

При использовании программы «Данфосс С.О.» с узлами учета, необходимо этот узел делать отдельным расчетным участком от запорно-измерительного клапана (ASV-M). Тогда расчет будет выполнен корректно: гидравлические сопротивления фильтра и теплосчетчика будут учтены за пределами регулируемого участка, т. е. соответствовать нарисованной схеме.

На рис. а) показано верхнее присоединение поквартирной ветки. Эта схема удобна тем, что узел находятся на этаже обслуживаемой квартиры. Удобно, снимать показания теплосчетчика, перекрывать квартиру… Но, не удобно осуществлять спуск теплоносителя с квартирной ветки. Необходимо вытеснять воду компрессором или насосом. Некоторым улучшением является схема на рис. б) . Однако и в этом случае есть незначительные сложности, возникающие при расположении нескольких подобных узлов в одной нише или шкафу: необходимо достоверно определять соответствие спускных кранов опорожняемой приборной ветке. С этой целью следует предусматривать на спускных клапанах бирки с обозначением квартир. Собственно, если в одном шкафу расположено несколько узлов присоединения приборных веток, то наличие обозначений обслуживаемых квартир всегда является удобным при эксплуатации.

Несколько упростить опорожнение квартирных веток можно реализовав схему на рис. в) . Узел подключения приборной ветки является нижней точкой, и теплоноситель вытекает самотеком. Кроме того, в этой схеме выполнена традиционная рекомендация по эксплуатации системы отопления в здании выше 16-ти этажей: установлен дренажный трубопровод. Недостаток схемы — необходимость потребителю снимать показания теплосчетчика, опускаясь этажом ниже.

Однако этот недостаток отсутствует при использовании автоматической передачи данных с теплосчетчика радиоволнами.

Такая возможность предусмотрена в теплосчетчике «Sonometer».

Дренажный трубопровод соединяют напрямую с дренажными кранами запорно-регулирующей арматуры, либо через промежуточные шаровые краны к трубопроводам приборной ветки. Вариантом может быть гибкий шланг, как аксессуар сантехника, показанный пунктирной линией на рис. д) .

При проектировании горизонтальных систем отопления необходимо минимизировать попадание воздушных пузырьков из стояка в приборные ветки. Для этого устанавливают автоматические воздухоотводчики в верхних точках подающего и обратного стояков. Весьма желательным является также присоединение трубопроводов к стояку с соответствующим незначительным уклоном (петлей).

Воплощением положительных свойств схем на рис. а), б) — расположение узла учета на этаже обслуживаемой квартиры и на рис. в) — самотечное опорожнение приборной ветки, является схема на рис. г) . К преимуществу данной схемы относят упрощение компоновки в шкафу (нише) узлов: присоединение подающих и обратных трубопроводов к стояку находятся на разных уровнях. Однако и в этом случае из подающего трубопровода необходимо вытеснять теплоноситель компрессором или насосом.

Возникают также незначительные сложности эксплуатации: отключение квартиры необходимо на разных этажах. Кроме того, такие узлы требуют повышенного внимания монтажников во время присоединения капиллярных трубок к соответствующим клапанам.

Наиболее экономичным и наименее эффективным вариантом присоединения приборных веток является схема на рис. д) . Регулятор перепада давления устраняет перетоки теплоносителя между группами квартир, возникающие при работе терморегуляторов, изменении гравитационного давления…, т. е. являющихся следствием изменения параметров теплоносителя до регулируемого участка (до капиллярной трубки). Но не устраняет перетоки теплоносителя между квартирами внутри группы приборных веток, обслуживаемых регулятором перепада давления. Для наладки системы внутри регулируемого участка необходимо устанавливать дополнительные регулирующие вентили после коллектора. Кроме того, ухудшаются регулировочные характеристики терморегуляторов, снижаются внешние авторитеты и настройки, в сравнении с предыдущими схемами. Как следствие ниже, энергосберегающий эффект. Так, если регулятор перепада давления обслуживает более 8 радиаторов, в соответствии с Нормой ЕC энергосберегающий эффект снижается на 2% [6].

Энергосберегающий эффект системы зависит и от наладки системы. Сегодня, зачастую, упускают этот важный аспект проектирования и не предусматривают такую возможность. В отличие от отечественной практики проектирования, в странах ЕC возможность наладки системы должна быть предусмотрена обязательно [7]. С этой целью абсолютно все балансировочные клапаны «Данфосс» как автоматические, так и ручные, которые устанавливают в узлах присоединения поквартирных веток, имеют специальные измерительные ниппели. Энергетический эффект налаженной системы отопления оценивают:

❏ по сокращению затрат на циркуляцию теплоносителя — 15% [8];

❏ по снижению теплопотребления — 3% [6].

Таким образом, проектируя те или иные схемы присоединения поквартирных приборных веток необходимо учитывать удобство съема информации с теплосчетчиков, обслуживания запорноегулирующей арматуры, опорожнения и обезвоздушивания системы, наладки системы, взаиморасположение элементов системы по отношению к регулируемому участку для повышения энергоэффективности и обеспечения теплового комфорта.

Кроме того, необходимо обеспечивать сохранность элементов системы отопления. Безусловно, окончательный выбор той или иной схемы обеспечения учета поквартирного теплопотребления зависит от проектировщика и заказчика, поскольку законодательно и нормативно он пока не решен в полной мере.

Несмотря на несовершенство нормативной базы проектировщики уже сегодня в большинстве случаев, применяя современные решения, вносят свой посильный вклад в повышение энергоэффективности систем отопления и реализацию учета теплопотребления.

Построение гидравлических контуров систем отопления, вентиляции и кондиционирования.

Комфортные условия пребывания людей в помещениях призваны обеспечивать системы отопления, вентиляции и кондиционирования. Эффективность работы этих систем влияет на самочувствие и работоспособность человека. Создание оптимальных условий микроклимата может улучшить производительность труда человека до 10%. Соответственно некачественная работа климатических систем может привести к увеличению числа ошибок и снижению работоспособности до 70%. Таким образом, правильный расчет, подбор оборудования и наладка систем микроклимата важны для организации жизнедеятельности современного человека.

Верный расчет и подбор оборудования систем отопления, вентиляции и кондиционирования, может быть, перечеркнут неверной организацией контура теплоносителя, поэтому важным этапом проектирования этих систем является правильная организация гидравлических контуров и подбор арматуры. Поскольку лишь правильно рассчитанный и спроектированный гидравлический контур может дать возможность генерирующему оборудованию (котлу, чиллеру) передать необходимую энергию конечному теплообменному устройству — радиатору, конвектору, теплообменнику или фенкоилу.

Поэтому при проектировании гидравлических контуров следует придерживаться трех правил гидравлики:

❏ расчетный расход должен быть обеспечен во всех частях системы;

❏ перепад давления при проходе через управляющие клапаны не должен слишком сильно изменяться;

❏ расходы должны быть согласованы в узловых точках системы.

Общими проблемами климатических систем, говорящими о том, что проектный расход не достигнут являются:

❏ энергетические затраты выше, чем ожидались;

❏ установленная мощность не передается при промежуточных и/или высоких нагрузках;

❏ слишком жарко в одних частях здания, слишком холодно в других его частях;

❏ слишком долгое время задержки до достижения требуемой комнатной температуры после утреннего запуска системы.

Эти проблемы характерны для систем с неверно подобранной и запроектированной балансировочной арматурой, и при неверном формировании гидравлических модулей внутри системы.

Основой для создания гидравлически корректных систем является построение модульной системы с применением балансировочной арматуры. Впервые идея балансировки была сформулирована в 1953 г. шведской компанией «Tour & Andersson» (ТА) , а в 1962 г. ТА был получен первый в мире патент на балансировочный клапан.

Гидравлический модуль — ветвь гидравлической двухтрубной системы с параллельными нагрузками (радиаторными стояками, теплообменниками, фенкоилами), гидравлически увязанными в модуле при помощи балансировочных клапанов ( рис. 1 ).

Image

Создание гидравлических модулей внутри замкнутой гидравлической системы необходимо для проведения настройки проектных расходов теплоносителя для каждой из нагрузок — проведения балансировки. Установкой балансировочных клапанов на каждой из нагрузок, при параллельном их подключении, достигается лишь верное соотношение распределения расходов между отдельными нагрузками, но не проектный расход через весь модуль. Поэтому каждому модулю должен быть придан один общий клапан — клапан-партнер.

Клапан-партнер определяет величину расхода теплоносителя через модуль.

Расход теплоносителя через модуль зависит от разницы давлений между точками А и В . Если давление на входе в модуль будет изменяться, то в таком же соотношении будет изменяться и расход теплоносителя через модуль и каждую из нагрузок.

При изменении расхода внутри модуля — например перекрытия клапана на нагрузке № 3 , будет оказано существенное влияние на расход и произойдет потеря давления в трубопроводах между 2 -й и 3 -й нагрузкой. Располагаемое давление на 4 -й нагрузке существенно повысится. Этот рост давления вызовет повышение расхода на 4 -й и 5 -й нагрузках. В то время как рост давления в общей сети трубопроводов всех нагрузок останется незначительным. Поэтому изменение расхода на 1 -й нагрузке будет невелико.

Следовательно, изменение расхода вне модуля сказывается пропорционально на изменении расходов внутри модуля на каждой из нагрузок.

Изменения внутри модуля нарушают пропорциональность распределения расхода внутри модуля.

Поэтому на практике балансировка гидравлической системы методом проб и ошибок занимает значительное время. Таким образом, мы хотим достичь только правильного распределения расхода между отдельными нагрузками. Мы способны достичь того же соотношения расходов отдельными нагрузками с бесконечно большим количеством комбинаций потерь давления на балансировочных клапанах, которые зависят только от разницы давлений, находящейся в нашем распоряжении и которую мы можем установить на клапане. Поэтому при проектировании и подборе балансировочной арматуры необходимо также подходить и с точки зрения экономической целесообразности. Отсюда вытекает требование к минимизации потерь давления при сохранении требуемых параметров. Поэтому важен в модуле гидравлически наиболее удаленный балансировочный клапан — балансировочный клапан 5-й нагрузки. Этот клапан должен иметь наименьшую потерю давления. В терминологии ТА он называется сравнительным клапаном. В связи с требованием к обеспечению требуемой точности измерения на арматуре этот сравнительный клапан должен иметь потерю давления хотя бы 3 кПа.

Если определена потеря давления сравнительного клапана, очевидно, что остальные балансировочные клапаны в модуле не могут иметь потерю давления ниже, чем потеря сравнительного клапана. Таким действием мы приходим к единому решению (поскольку известна потеря давления одного клапана в модуле), которое одновременно представляет собой самую низкую потерю давления сети при сохранении номинальной точности измерения. То есть если на основании этого принципа сбалансирована гидравлическая система, мы уверены, что мы достигли четкого функционирования при ее наиболее низкой из возможных потерь давления.

Правильному подбору балансировочной арматуры необходимо уделять соответствующее внимание. Только таким образом последующая балансировка гидравлической системы будет эффективной и наиболее точной. В принципе можно допустить две ошибки при подборе размеров клапанов, каждая из которых имеет свои негативные последствия для самой балансировки. Применение увеличенных размеров арматуры в целом ведет к повышению капитальных затрат. К тому же при эксплуатации клапан перекрыт более чем на половину, что снижает точность замеров на нем. Другой проблемой является применение клапанов с заниженными размерами. Результатом такого подбора является невозможность достижения проектного расхода через клапан даже при его полном открытии.

Правильный подбор балансировочного клапана учитывает область открытия с наилучшей точностью измерения параметров потока. Подбор считается правильным, если степень открытия балансировочного клапана 50-100%, оптимальным 75%. Минимальное падение давления на балансировочном клапане 3 кПа. При такой потере давления уже гарантируется номинальная точность проведения замеров — до 5%.

Балансировочные клапаны можно считать определенным видом измерительного оборудования. Поэтому имеет смысл до и после клапана соблюдать прямые участки (в направлении до клапана 5D и за клапаном 2D ). Если перед балансировочным клапаном установлены элементы, генерирующие сильные помехи расхода (насос, моторизованный регулирующий клапан и т.п.), рекомендуется продолжить прямой участок перед клапаном минимально до 10D ( рис. 2 ). Монтаж балансировочных клапанов возможен как на подводящем, так и на возвратном трубопроводе, он зависит только от хода диаграммы давления.

Image

Верное создание гидравлических модулей и подбор балансировочных клапанов лишь частично решает вопрос возможности сбалансировать гидравлическую систему. Замкнутая гидравлическая система нуждается в создании иерархии модулей внутри себя. На рис. 3 приведена система, состоящая из модулей двух уровней. Если внутренние модули уже сбалансированы, их можно рассматривать как отдельные нагрузки (правая сторона рисунка) Первоначально клапаны-партнеры таким образом становятся клапанами в новом, более высоком, модуле, который мы балансируем тем же способом, что и модули внутренние. Клапаном-партнером этого нового модуля снова является самым близким к насосу клапан, который снова может быть составной частью более высокого модуля и т.д.

Image

Таким образом, при проектировании гидравлических двухтрубных систем необходимо помнить:

❏ объединение потребителей в модули;

❏ построение модулей по иерархическому принципу;

❏ установка клапанов партнеров на каждом модуле и ветке;

❏ оптимальная настройка балансировочного клапана при 75% открытия;

❏ минимальное давление на балансировочном клапане 3 кПа;

❏ рекомендации по соблюдению минимальных расстояний до клапана от подсоединяемых участков.

Котлы торговой марки ATON

Эффективность работы централизованных систем отопления в первую очередь зависит от применяемых водогрейных котлов.

Основными требованиями, предъявляемыми заказчиком к такому оборудованию, являются надежность, безопасность, адекватная стоимость и экономичность. Именно эти составляющие были заложены специалистами ООО Завод «Атонмаш» , входящего в состав холдинговой компании «Укртехнопром» , в основу разработок котельного оборудования под торговой маркой ATON.

Промышленные котлы, номинальной мощностью 250 кВт и 630 кВт, реализованы на базе трехходовых стальных сварных теплообменников с использованием горелок итальянского производства и газовых рамп германского производства.

Котлы поставляются укомплектованными всеми необходимыми элементами безопасности в соответствии с требованиями ДНАОП 0.00.-1.26-96 и СНиП II-35-76.

Использование трёхходового теплообменника изготовленного с использованием марганцевистой стали позволило ощутимо улучшить радиационный теплообмен в топке, снизить содержание окиси углерода и оксидов азота в продуктах сгорания, уменьшить тепловую нагрузку на термоизоляцию двери.

Для повышения надежности оборудования сварные швы топки котлов подвергаются 100% рентгенографическому контролю.

■ Котел мощностью 250 кВт работает на жидком и газообразном топливе и маркируется:

❏ КВа-0,25 ЛЖ, где ЛЖ — легкое жидкое топливо;

❏ КВа-0,25 Гн (Гс), где Гн — газ низкого давления, Гс — газ среднего давления (в зависимости от типа

поставляемой газовой рампы, котел может работать либо на среднем либо на низком входном давлении природного газа).

■ Котел мощностью 630 кВт работает исключительно на газовом топливе и маркируется КВа-0,63 Гн(Гс).

Технические характеристики котлов соответствуют современным требованиям к такому классу оборудования.

Основные технические параметры котлов представлены в табл. 1 .

Image

Котел конструктивно представляет собой трехходовую газотрубную систему, которая включает в себя топку, жаровые и дымогарные трубы. Горючее сгорает в топке, из которой дымовые газы по жаровым трубам движутся к фронту котла, поворачиваются на 180 ° к дымогарным трубам и поступают в дымоход. Внутри дымогарных труб установлены турбулизаторы, которые улучшают конвективный теплообмен между дымовыми газами и теплоносителем и при этом значительно увеличивают коэффициент полезного действия котла.

Панели обшивки котла изготовлены из стального листа, на который нанесено декоративное покрытие порошковой эмалью, сохраняющей свои свойства на протяжении всего срока службы котла. Теплоизоляция корпуса котла выполняется шаром фольгованой минеральной ваты.

Используемые блоки автоматики и горелки производства знаменитых итальянских производителей позволяют реализовать широкий спектр функций, которые необходимы для построения систем отопления, отвечающих самым передовым требованиям:

❏ управление несколькими котлами, работающими на общую сеть;

❏ осуществление как термостатической, так и погодозависимой теплогенерации;

❏ подключение к системе управления котлом дополнительного оборудования (циркуляционных насосов, емкостных водонагревателей и т.д).

Гарнитура котла состоит из дверей и дымохода, в который вмонтирован взрывной клапан. Конструкция дверей предусматривает возможность открытия как в правую, так и в левую сторону, для этого на дверях установлены специальные рукоятки. При необходимости изменения направления открытия дверей, рукоятки переставляются на соответствующую сторону. Для удаления котловой воды и шлака в нижней части корпуса котла предусмотрен дренаж. Строение котлов представлено на рис. 2 .

Image

Вопросам безопасности разработчики котлов марки ATON уделили особое внимание. Агрегат оснащается датчиком избыточного давления в топке и реле максимального давления в котле. На блоке безопасности котла устанавливается пружинный предохранительный клапан прямого действия с регулируемой настройкой срабатывания.

Image

Кроме того, функции обеспечения безопасности выполняют газовая рампа, горелка и блок управления (в табл. 2 приведены возможные компоновки горелочного оборудования). Они обеспечивают следующие виды защит:

❏ падение давления газа перед газовой рампой;

❏ повышение давления газа перед горелкой;

❏ падение давления воздуха в топке;

❏ затухание факела;

❏ исчезновение напряжения питания (предотвращение самозапуска);

❏ превышение давления газов в топке (защита от взрыва);

❏ превышение давления воды в котле;

❏ превышение температуры воды в котле.

Дополнительно к блоку автоматики котла может быть подключена автоматика контроля загазованности помещения котельной (в комплект не входит). Гарантийный срок эксплуатации котлов составляет 12 месяцев. Сервисные центры по обслуживанию продукции торговой марки ATON расположены по всей территории Украины. Они способны в кратчайшие сроки устранить любые возможные неполадки в работе аппаратуры и дефекты, возникшие в процессе эксплуатации оборудования.

Котлы, бывшие в употреблении, или «Скупой платит дважды»

Наряду с новыми котлами сегодня на украинском теплотехническом рынке определенный сегмент занимают котлы, которые уже были в употреблении (б/у). Как правило, это оборудование завозится контрабандой из Польши, Румынии, Словакии и Венгрии. За границей котлы, отработав свой ресурс, заменяются новыми. Украинских покупателей б/у оборудование привлекает низкой ценой. Однако покупателю в силу неосведомленности сложно оценить весь комплекс проблем б/у оборудования, которые не замедлят себя проявить после покупки.

Покупая котел б/у, человек не знает, где и в каких условиях он эксплуатировался. А это очень важно, ведь котел — сложное теплотехническое оборудование, на которое оказывают воздействие многие внешние факторы: качество и характеристики топлива, сантехнической воды, стабильность частоты и напряжения в электросети и условия, в которых он работает.

Покупателю также сложно оценить объем дополнительных расходов, которые ему придется понести для восстановления работоспособности котла. Не учитывается и тот факт, что либо б/у котлы вообще не возьмутся обслуживать сервисные центры, либо их ремонт будет стоить на несколько порядков выше, чем для нового оборудования.

Таким образом, вместе с б/у котлом покупатель приобретает не решение своей проблемы отопления и горячего водоснабжения, а дополнительные растраты времени и денег.

Нередки случаи, когда покупатели, делая выбор между новым и б/у оборудованием, останавливаются на последнем, так как цена отработавшего котла сравнительно ниже нового. Также зачастую уверения продавцов о возрасте котлов и в том, что это никаким образом не повлияет на его дальнейший срок службы, не соответствуют действительности. В таких случаях лучше перестраховаться и обратиться в представительство компании, чтобы узнать максимум информации о модели котла. Ведь может оказаться, что вместо уверяемых продавцом, к примеру, 3-4 лет работы котла, котлу на самом деле 13-ть, и что уже вот как энное количество лет, как эта модель снята с производства!

Поскольку не у всех людей, которые хотят приобрести котел, есть знакомые специалисты в теплотехнической сфере которые готовы оказать компетентную консультацию, в этой статье с помощью простых фактических иллюстраций мы расскажем о возможных проблемах в основных узлах б/у котлов.

Теплообменник

В теплообменнике, в зависимости от времени и условий эксплуатации, происходит отложение солей кальция и магния, а также других химических элементов, находящихся в воде. В некоторых случаях очень тяжело восстановить теплообменник даже с помощью кислотной промывки. Если же в системе отопления, в которой раньше работал котел, была использована незамерзающая жидкость (антифриз) неизвестного происхождения, очень сомнительно, что этот узел вообще возможно очистить для дальнейшего использования.

Теплообменник может быть поврежден не только изнутри, но и снаружи. Характер повреждения может быть разнообразным, например, погнутые или подверженные коррозии ребра теплообменника, поврежденная пайка на соединениях и даже банально закупоренные сажей проходы. Такие теплообменники чаще встречаются в котлах, техническое обслуживание которых не проводилось или они работали в помещении с плохой приточно-вытяжной вентиляцией. Кроме этого, свое негативное воздействие на теплообменник могли оказывать еще другие факторы, например, работа котла в помещении, где проводились строительные и отделочные работы.

Перечисленные факторы могут повлечь выход из строя этого основного узла котла, а когда это случится, не может знать ни продавец, ни покупатель.

Пластинчатый теплообменник

Через этот узел проходит и теплоноситель, и сантехническая вода. Учитывая, что расстояние между пластинами очень узкое, а качество теплоносителя или сантехнической воды в системе отопления и водоснабжения, где ранее работал котел, неизвестно, то опять вероятна проблема с отложением солей кальция и магния на стенках теплообменника. Это является причиной недогревания сантехнической воды для нужд ГВС и снижения эффективности работы котла в целом. Что касается контура теплообменника, по которому проходит теплоноситель, то при определенном уровне загрязнения этого контура котел буде «закипать». Когда проявят себя вышеописанные процессы в б/у котле, определить невозможно.

Циркуляционный насос

В процессе эксплуатации на указанный узел также влияет ряд негативных факторов. Весь теплоноситель в системе отопления проходит через циркуляционный насос, оставляя в нем отложения тех же солей жесткости (соли кальция и магния). Какое было качество теплоносителя в системе отопления, где ранее работал котел? Вряд ли кто-то ответит вам на этот вопрос. Кроме того, в отопительных системах, где отсутствуют фильтры или был проведен некачественный монтаж системы отопления, существует вероятность попадания инородных тел в крыльчатку насоса. Если же учесть износ подшипников и ротора циркуляционного насоса, то в итоге мы получаем насос, который полностью или частично выработал свой ресурс в б/у котле. Неизвестно, сколько проработает описанный насос. Возможно, ему и провели предпродажную подготовку, например, слегка почистили, чтобы не шумел. Но эта подготовка только не надолго оттянет тот момент, когда насос окончательно выйдет из строя.

Погружные температурные датчики

Эти маленькие детали в котле выполняют очень важную роль в процессе работы оборудования. Поскольку датчики частично погружены в теплоноситель или сантехническую воду, чтобы следить за изменением их температуры, они также не защищены от отложения солей кальция и магния.

К чему может привести образование накипи на поверхности погружной части температурного датчика? Накипь уменьшит чувствительность датчика, что повлечет неточное измерение температуры теплоносителя. Соответственно, из-за неточных данных котел не сможет поддерживать заданную температуру: теплоноситель будет либо недогреваться либо перегреваться. Такая неоптимизированная работа котла характерна практически для всех котлов б/у.

Электронные платы

В связи с тем, что мы не знаем условий эксплуатации б/у котла, мы, соответственно, не можем знать, в каком состоянии находятся электронные платы или электрическая проводка котла. Если ранее платы были подвержены короткому замыканию или скачкам напряжения, то, возможно, их ремонт проводился кустарными методами, что в будущем негативно может сказаться на работоспособности этих плат. Возможен и такой вариант, что платы работают нормально, но на них есть подгоревшие контакты, которые образовались вследствие негативного воздействия электричества после некачественного ремонта плат или подачи напряжения на провод заземления. В таком случае, долговременная работа этих плат вообще невозможна. С большим сомнением можно отнестись и к проводке, так как на ней также могут быть места плавления вследствие короткого замыкания или теплового воздействия. Кроме того, существует большая вероятность, что места крепления проводов ослаблены. Поэтому в любой момент может пропасть электрический контакт в цепи питания оборудования.

Расширительный мембранный бак

Как и все другие составляющие котла, расширительный бак имеет свой ресурс. В середине этого бака находится резиновая мембрана. С одной стороны мембраны закачан азот, с другой стороны находится теплоноситель. От качества теплоносителя и зависит срок службы мембраны. Со временем резина мембраны изнашивается, теряется ее прежняя эластичность. Существует вероятность образования микротрещин. Плюс к этому разрушительное воздействие на мембрану оказывают химические элементы теплоносителя. Как показывает практика, в системах отопления, где в качестве теплоносителя используют незамерзающую жидкость, срок службы резиновой мембраны расширительного бака намного меньше, по сравнению с системами отопления, где в качестве теплоносителя используется вода. Выход из строя резиновой мембраны расширительного бака в котле автоматически приводит к выходу из строя всего расширительного бака.

Автоматический сбросной клапан

При обслуживании оборудования автоматическому сбросному клапану, который расположен в контуре отопления котла, необходимо уделять особое внимание. Периодически ему нужно проводить профилактику: разбирать и чистить внутренний механизм. Внутри сбросного клапана находится поплавково-игольчатый механизм. Под воздействием солей жесткости, водорода или других агрессивных сред, находящихся в теплоносителе системы отопления, со временем поплавковый механизм может заклинить. В таком случае при попадании порции воздуха в контур котла существует большая вероятность образования воздушной пробки, которая приведет к нарушению циркуляции теплоносителя, что, в свою очередь, вызовет резкий рост температуры теплоносителя и дальнейшее закипание котла. Поскольку воздушная пробка не даст возможности циркуляционному насосу обеспечить сброс тепловой инерции в контуре котла через бай-пас, впоследствии может возникнуть гидравлический удар. На практике имели место гидравлические удары такой мощности, что происходила разгерметизация отопительного контура котла.

Блок газовой автоматики

Это один из основных механизмов котла, который отвечает за регулирование давления газа на горелке и общую безопасность котла. Возможно, котел ранее работал на некачественном запыленном газе, возможно, был загрязнен газопровод или на нем отсутствовал газовый фильтр. Перечислим последствия, которые влекут указанные причины: первое — залипание запорных катушек газового клапана, второе — загрязнение внутренних каналов газового клапана с последующим выходом из строя всего газопневматического механизма.

В заключение хотелось бы сказать, что, покупая котел, бывший в употреблении, Вы рискуете приобрести множество проблем. Ведь у вас нет гарантии на это оборудование, его некому обслуживать, непонятно, насколько качественно и своевременно будет обслуживаться Ваш котел. Поэтому затраты на запчасти могут превысить стоимость нового котла с гарантией.

В этой статье мы не охватили еще целый ряд негативных моментов, которые характерны для б/у котлов. Мы описали негативные процессы, которые могут происходить с самым простым по своей компоновке котлом. Но чем сложнее оборудование, тем больше в нем дополнительных механизмов, на которые так же в свою очередь могли оказывать негативное воздействие газ, вода, электричество и условия эксплуатации. Котлу всегда могут провести предпродажную подготовку (почистить узлы и механизмы), но это не сделает котел новым. И, однозначно, никто не может гарантировать Bам работу такого оборудования на какой-то определенный срок. Такое оборудование может остановиться у Вас уже завтра, а может,даже и сегодня.

Выбор тепловых насосов

Историческая справка
Толчком для развития теплонасосных систем в мире послужили энергетические кризисы 1973 и 1978 гг. В Америке, в начале своего развития, геотермальные системы устанавливались в домах высокой ценовой категории. Но сегодня, за счет применения современных технологий, геотермальные тепловые насосы стали доступны многим американцам. Они устанавливаются в новых зданиях или заменяют устаревшее оборудование с сохранением или незначительной модификацией прежней отопительной системы.

В 1980-ом году в Америке уже работало около 3 млн тепловых насосов, в Японии — более 0,5 млн, в Европе — 0,15 млн. В 1993 г. общее количество установленных тепловых насосов в странах западной Европы составило свыше 12 млн. Сегодня в США ежегодно производится около 1 млн геотермальных тепловых насосов. А при строительстве новых общественных зданий используют исключительно геотермальные тепловые насосы. Эта норма была закреплена Федеральным законодательством США. Геотермальный тепловой насос был установлен даже в широко известном небоскребе Нью-Йорка «The Empire State Building».

В Швеции 70% потребности в тепловой энергии обеспечивают тепловые насосы. В Стокгольме 12% всего отопления города обеспечивается геотермальными тепловыми насосами общей мощностью 320 МВт, использующими в качестве источника тепла Балтийское море.

В Германии предусмотрена дотация государства на установку тепловых насосов в размере 200 евро за каждый кВт установленной мощности.

В Финляндии, Швеции и Норвегии процент использования геотермальных систем составляет около 30%.

По прогнозам Мирового Энергетического Комитета, к 2020 г. доля геотермальных тепловых насосов в теплоснабжении составит 75%.

Активный процесс инсталляции геотермальных систем начался в странах Прибалтики. В России, имеющей большие запасы нефти и газа, за последние 3 года установлено около 1000 геотермальных установок.

Геотермальные системы безопасны и экологически чисты, они не наносят вред окружающей среде. Это утверждение подтверждает опыт более чем 30-летней эксплуатации геотермальных систем в странах, где вопрос экологии стоит далеко не на последнем месте.

Тепло Земли с точки зрения теплофизики

Внутренняя температура приповерхностного слоя Земли составляет около 10 °С и не зависит от сезона: зимой она выше, а летом — ниже температуры воздуха. Безусловно, эта температура слишком мала, чтобы её использовать для нужд человека. Еще в прошлом веке, успехи теплофизики и технологии рефрижераторных установок позволили разработать способы преобразования этой «низкокачественной» тепловой энергии в «высококачественную» (пригодную для использования в тепловых системах).

С точки зрения теплофизики грунт является неиссякаемым источником тепловой энергии. «Отобрать» геотермальное тепло (тепло грунта) можно с помощью тепловых насосов. Тепловой насос — это устройство, которое позволяет принимать тепло от низкотемпературного источника, преобразовывать в высокотемпературное и передавать его в теплоноситель различных систем отопления или нагрева.

Технически простая система геотермального отопления может преобразовать и направить в здание 3,5…4,5 кВт (или около 80 Мкал/сут.) тепловой энергии, затрачивая при этом на работу установки всего 1кВт электрической мощности. В летнее время эта же система позволит охлаждать помещения. Геотермальные системы сохраняют работоспособность и эффективность даже при экстремальных температурах окружающей среды.

При «отборе» тепла Земли используют ее верхний слой, находящийся на глубине до 100 метров от поверхности. С точки зрения теплообмена этот слой грунта находится под воздействием лучистой энергии Солнца, радиогенного тепла из глубинных слоев Земли, конвективного теплообмена с атмосферным воздухом и теплопереноса за счет различных массообменных процессов (дождь, таяние снега, грунтовая вода и т.д.).

В зарубежной литературе существует несколько различных классификаций грунтов. Нас, в большей степени, интересует классификация грунтов по их теплопроводности. В приведенной табл. 1 используются данные известного американского справочника ASHRAE [1].

Image

В российских источниках нами обнаруженa Таблица 3 СНиП 2.02.04-88 [2], на основе которой можно составить табл. 2 по определению теплопроводности талого грунта — th.

Из сравнения табл. 1 и 2 видно, что данные американских и российских справочников довольно адекватны. Для точного определения теплопроводности грунтов необходимо проводить экспериментальные исследования теплопроводности в месте предполагаемой установки оборудования.

Image

Отметим, что теплопроводность грунта не является величиной постоянной в течение года. Она зависит от влажности, агрегатного состояния влаги в грунте и температуры. Причем особенно сильно влажность меняется при замерзании грунта. Данные [4] говорят о том, что теплопроводность мерзлых грунтов f составляет:
Image

О температуре грунта на различной глубине у автора есть лишь данные из зарубежных источников (см. рис. 1). Из этих данных можно сделать вывод, что на глубине более 8 м температура практически постоянна в течение года (изменения составляют только 1/20 изменений на поверхности). В странах, где тепловые насосы нашли широкое применение, существует такое понятие, как температура грунта. Справочник ASHRAE предлагает определять температуру грунта по температуре грунтовых вод в данной местности. Если исходить из температуры грунтовых вод, то она колеблется в пределах 8-10 °С для  условий Беларуси. С незначительными отклонениями этиданные можно принять и для условий Украины.

Image

Значение количества радиогенного тепла составляет (для зоны Центральной Европы) 0,05-0,12 Вт/м2. Если оно не известно, то обычно принимается 0,1 Вт/м2. Существует два основных способа отбора геотермального тепла — с помощью открытых и закрытых контуров. Под открытым контуром понимают использование теплоты грунтовых вод, предусматривающих доставку этих вод на поверхность, использования их теплоты и возврат в пласт.

Под закрытым контуром понимают использование теплоты грунта с помощью промежуточных теплообменников и теплоносителей.

В свою очередь системы с закрытыми контурами различают по типу теплообменников — горизонтальные (рис. 2, а) и вертикальные (рис. 2, б).Устройство закрытых контуров с вертикальными теплообменниками дороже, чем с горизонтальными теплообменниками. В то же время контуры с горизонтальными теплообменниками занимают большие площади, что может оказать в некоторых случаях весьма критичным условием.

Image

Размещение труб в траншее обычно выполняется двумя основными способами: прямые и свитые в спираль трубы. В жизни существуют и другие, иногда довольно экзотические, способы, например, трубопроводы, прикрывают сверху медными пластинками (copper fins) — видимо для улучшения теплообмена.

Решение по выбору системы отопления принимается на этапе проектирования, и связано с реализацией конкретного проекта. Теплообмен в грунтах довольно сложный процесс, поэтому производители тепловых насосов подходят к этому вопросу по-разному.

Одни рекомендуют при расчетах усредненные значения теплообмена, другие приводят вполне конкретные значения для производимых ими теплообменников, полученные в результате изучения грунтов и исследований. В Украине фактически единственная компания «ГеолбудМ» вплотную подошла к решению аналогичных вопросов.


Выбор мощности теплового насоса при проектировании

В ряду тепловых насосов, для работы которых в качестве источника тепла используется тепло поверхностного слоя Земли, выделяется тепловые насосы EarthLinked® с подземным медным теплообменником DIRECT AXXESS® американской компании ECR Technologies Inc.

Отличительной особенностью этих насосов является то, что для доступа к стабильной земной температуре используется U-образный трубопровод-испаритель с хладагентом. Хладагент непосредственно подается к источнику земного тепла, и это инженерное решение обеспечивает высокую эффективность геотермальной отопительной системы. Испаритель устанавливается в грунт горизонтально ниже глубины промерзания или вертикально, в предварительно пробуренные скважины. Скважины бурят диаметром 40-60 мм вертикально или диагонально до глубины 15 или 30 м.

На примере тепловых насосов этой компании рассмотрим, как происходит выбор мощности теплового насоса.

В первую очередь определяются теплопотери здания по методике разработанной ECR Technologies Inc. с использованием программного продукта этой же компании. Фактически методика мало чем отличается от отечественного пособия к СНиП 2.04.05-91 «Отопление, вентиляция, кондиционирование» с изменениями № 1,№2, введенными в действие Госстроем Украины в 1996 и 1999 гг.

Отдельно нужно сказать, что опыт инсталляции тепловых насосов в США, да и в Европе говорит о том, что установку теплового насоса нужно рассматривать как комплексное решение задачи по энергосбережению.

С одной стороны, это установка в здании энергосберегающей системы, с другой — это снижение теплопотери здания до уровня при котором для отопления здания достаточно 50 Вт/м2. Только при таких условиях проект в целом считается энергосберегающим и обеспечивается поддержкой государственного финансирования, стимулирования установщиков оборудования в странах, где сегодня разработаны соответствующие программы и активно проводится установка тепловых насосов.

При проектировании, выбор теплового насоса для конкретного здания сводится к условиям, которые наглядно отображены на приведенном на рис. 3 графике димензионирования (измерения) мощности.

Image

Из рис. 3 видно, что точка баланса системы (пресечение прямой теплопроизводительности системы отопления и прямой нагрузки ограждающих конструкций здания) должна соответствовать проектной температуре для региона, где устанавливается система отопления.

Зона графика, лежащая от точки баланса системы справа, определяет рабочую зону системы отопления.

Зона графика, лежащая от точки баланса системы слева, определяет зону, в которой система не справляется с покрытием тепловых потерь ограждающих конструкций. Для таких случаев в системе предусмотрен так называемый «пиковый догреватель», который при необходимости автоматически включается, увеличивая тепловую мощность системы.

Мощность «пиковых догревателей» выбрана таким образом, что при его включении система отопления в состоянии обеспечить заданную температуру в здании при наружных температурах воздуха до -30 ... -34 °С.

В табл. 3 приведены значения необходимой дополнительной мощности, которая потребуется для поддержания стабильной, заданной температуры в условном здании при проектировании. Среднестатистические расчеты показывают, что использование «пикового догревателя» составляет 2-3% в год, что не может существенно отразиться в затратах на отопление. Тем не менее, существует возможность установить систему с изначально заложенной избыточной мощностью, однако это существенно скажется на капитальных затратах, то есть затратах связанных со стоимостью системы и её установкой.

Image

Нужно отметить, что температура бытовой воды либо теплоносителя для системы отопления на выходе теплового насоса не может превышать 50-55 °С. Именно по этой причине тепловой насос рекомендуется использовать с системой отопления «водяной лучистый пол». В такой системе температура теплоносителя, как правило, составляет 30 °С и не превышает 35 °С. Для бытовой воды 50 °С достаточная температура, даже избыточная.

Использование тепловых насосов в системах радиаторного отопления влечет за собой увеличение площади радиаторов почти в два раза. На практике не всегда существует такая возможность, поэтому решение по выбору системы отопления принимается на этапе проектирования, и связано с реализацией конкретного проекта.

Итогом расчета является представление КПД (СОР) системы при различных температурных нагрузках на здание (табл. 4). ■

Image

Тепловая завеса DEFENDER

DEFENDER — это самая современная тепловая завеса на рынке. Она позволяет поддерживать защитный барьер от холодного воздуха при входе в объект, а в летний период предохраняет от пыли, ветра или же насекомых.

DEFENDER позволяет оставлять открытыми двери в помещение независимо от атмосферных условий. DEFENDER — это защита, температура в помещении не падает, несмотря на открытые двери. Выбирая тепловую завесу DEFENDER, Вы будете на шаг впереди других. 

Работа тепловой завесы DEFENDER реализуется через электронную систему управления, которая объединяет в себе функции управления и защиты. Завеса спроектирована таким образом, чтобы она могла действовать без каких-либо дополнительных автоматических устройств. Изменение режимов работы оборудования происходит с помощью пилотного устройства, поставляемого в комплекте. Электроника тепловой завесы DEFENDER приспособлена к расширению системы автоматики дополнительными устройствами управления, такими, как: термостат помещения, дверной выключатель, настенная панель управления. При использовании указанных контроллеров, у пользователя нет необходимости вмешиваться в функционирование завесы.

 

Жесткость воды: способы смягчения

Характеристики и свойстважесткой воды
К слабодиссоциирующим основаниям относятся гидроксиды кальция и магния. Поскольку в жесткой воде содержатся ионы Са2+ и Mg2+, они участвуют в реакции гидролиза — взаимодействия с продуктами диссоциации воды:
Image
В результате в растворе появляется избыточный водородный ион и жесткая вода «подкисляется», рН (отрицательный логарифм концентрации водородного иона) при этом снижается по сравнению с нейтральным и становится меньше 7. Чем выше ОЖ воды, тем ниже значение рН. К слабодиссоциирующим кислотам относится угольная кислота. Вода с карбонатной жесткостью содержит ионы НСО3- и СО32-, а они участвуют в реакции гидролиза — взаимодействия с продуктами диссоциации воды:
Image
В результате в растворе появляется избыточный гидроксильный ион и вода с карбонатной жесткостью становится «щелочной», рН при этом повышается по сравнению с нейтральным и становится больше 7. Чем выше КЖ воды, тем выше значение рН.Обычно в воде общая и карбонатная жесткость встречаются одновременно, но не всегда равны друг другу. Как следствие, рН такой воды будет выше или ниже 7, в зависимости от соотношения карбонатной и общей жесткости.
Важной характеристикой воды является так называемая «щелочность», под которой понимают количество кислоты, способное нейтрализовать все анионы, придающие воде щелочность. На практике щелочность совпадает с карбонатной жесткостью, т. к. в результате химической реакции карбонатов и гидрокарбонатов с кислотой образуется угольная кислота, легкоразлагающаяся на воду и летучее СО2:
 Image 

Вода всегда контактирует с воздухом. В воздухе содержится СО2 (в среднем0,046% мас.), способный растворяться в воде, смещая равновесие реакции (6)влево, и далее по цепочке смещая влево равновесие реакций (5), (4) и (3). В результате, вода в открытых водоемах, негерметичных емкостях или градирнях способна снижать рН до 6,3 за счет растворения СО2. Но при этом не остаются в стороне реакции (3) и (4) — реакции гидролиза ионов, создающих общую и карбонатную жесткости. Поэтому растворение СО2 в жесткой воде будет происходить не так, как в дистиллированной.

При контакте воздуха с СО2 равновесие системы «вода с ОЖ и КЖ» будет очень неустойчиво и будет постоянно смещаться в зависимости от концентрации СО2 над раствором, растворимостиСО2 в данной многокомпонентной системе, концентрации ионов, условий кристаллизации малорастворимых солей и, конечно, в зависимости от температуры, как одного из главных факторов, определяющих скорость химических реакций. Все это будет обусловлено постоянным смещением направления химических реакций, как это было указано в первом абзаце раздела 3.2.


4.1. Буферность жесткой воды

Необычайная подвижность системы, которую представляет собой вода с общей и карбонатной жесткостью, ее способность постоянно менять в зависимости от условий количественный состав компонентов, как это ни парадоксально, придают ей значительную инерционность относительно рН. В химии такую инерционность называют буферностью. Под буферностью понимают способность жесткой воды менять значение рН в достаточно узком диапазоне при значительном изменении концентрации ОЖи КЖ. pH буферного раствора можно выразить уравнением:

Image

где pK — отрицательный логарифм константы диссоциации воды, OH–и H+— равновесные концентрации гидроксильного иона и протона. В случае дистиллированной воды, как это описано в разделе 3.1.,

OH–=H+= 10–7 и, как следствие,

lg1 = 0, а рН = рК = 7.

В случае карбонатнобикарбонатной буфферности, учитывая одновременное протекание следующих процессов диссоциацииассоциации:

Image
следует записать:

Напомним, что значения рК и, как следствие, рН ощутимо зависят от температуры и концентрации других ионов.
    При соотношении HCO3–: H2CO3в диапазоне 1:100–100:1 бикарбонатная буферность обеспечивает изменения рН раствора в диапазоне 4,37–8,37.Аналогично, при отношении CO32–:HCO3– в диапазоне 1:100–100:1 карбонатная буферность обеспечивает изменение рН раствора в диапазоне8,25–12,25.

Растворимость СО2 в жесткой воде в диапазоне изменения рН = 6–8,5 определяется в том числе величиной карбонатной жесткости (КЖ) и может быть рассчитана по аппроксимационному уравнению с ошибкой s = ±0,02 мг экв/л:

Image

Коэффициент множественной корреляции R2 = 0,9906.

Из уравнения следует, что растворимость углекислоты растет линейно с ростом КЖ. Это значит, что жесткая и очень жесткая вода при охлаждении в градирне достаточно интенсивно поглощает углекислоту из воздуха, что приводит к отложениям карбоната кальция на поверхностях теплообмена. А подпитка градирни(восполнение потерь воды в результате испарения) и постоянный контакт с воздухом — бесконечный источник образования карбонатной накипи. Логичным техническим решением в данном случае могла бы быть очистка подпиточной воды от Са2+ и Mg2+ (снижение ОЖ).

5. Методы и установки для снижения жесткости воды

Как следует из сказанного выше, натуральная и экологически чистая вода должна обладать определенной жесткостью. Недаром питьевую воду, соответствующую стандартам по содержанию ионов кальция и магния, можно отнести к жесткой. Главная причина, почему жесткой воде, снижению жесткости, смягчению уделяется такое большое внимание, заключается в способности гидроксидов, карбонатов и гидрокарбонатов кальция и магния, двойных солей этих металлов образовывать малорастворимые соединения, откладывающиеся на поверхностях теплообмена, на стенках технологического оборудования и трубопроводов, выводить из строя нагнетающие насосы. Оказывается, смягчить воду, а в случае котлов высокого давления деминерализовать, гораздо дешевле, чем:

  • проводить регулярные чистки или замену оборудования;

  • иметь постоянный перерасход топлива на производство горячей воды, тепла, пара;

  • загрязнять окружающую среду продуктами сгорания топлива, а особенноСО2, создающего на планете Земля парниковый эффект, благодаря которому наша планета стремительно приближается к состоянию безжизненной планеты Венеры. Из свойств солей, обуславливающих жесткость воды, естественно вытекают методы ее смягчения, аппаратурные решения и технологические схемы.


5.1. Термическое смягчение воды

Растворимость малорастворимых солей жесткости снижается с ростом температуры раствора. Лет тридцать назад автору этой статьи при составлении патентных обзоров попадалось довольно много патентов, в которых предлагалось нагреть жесткую воду, заставить кристаллизоваться (выпасть в осадок) солижесткости, а смягченную таким образом воду использовать в технологическом процессе. Действительно, нагревая до120–200°С очень жесткую воду, например с общей жесткостью 17 мг экв/л, и заставляя карбонат кальция выпадать в осадок, можно снизить как карбонатную, так и общую жесткость в 620–3700раз. Технико-экономические проблемы, которые при этом надо решать:

  • дешевое тепло;

  • быстрая кристаллизация карбоната кальция желательно в объеме раствора;

  • фильтрация осадка; очистка поверхностей оборудования для термического смягчения воды от карбоната кальция.


5.2. Химическое смягчение воды

На ТЭЦ воду, заполняющую теплотрассы и являющуюся теплоносителем, смягчают до содержания солей жесткости 1,1–1,5 мг экв/л. Чаще всего применяются два метода химического смягчения: известковый и известково-содовый [1, 2].Другие методы смягчения, описанные в литературе, применяются гораздо реже.

Сущность химических методов очистки заключается в переводе ионов Са2+и Мg2+ в соединения с ограниченной растворимостью: карбонат кальция СаСО3и гидроксид магния Мg(ОН)2. Критериями выбора конкретного метода очистки раствора являются общая жесткость сырой (несмягченной) воды, стоимость и доступность осадительных реагентов, возможность использования коагулянтов или флокулянтов.

Известковый метод (очистка суспензией гидроксида кальция известковым молоком) применяется для смягчения «довольно жесткой» воды (см. таблицу) и предусматривает образование гидроксида магния в соответствии с химической реакцией:
Image

Знак указывает, что данное соединение выпадает в осадок. При этом образование карбоната кальция с последующей кристаллизацией возможно при наличии карбонатной жесткости. При постоянном произведении растворимости за счет смещения равновесия по уравнению (14) поступающее с известковым молоком избыточное количество ионов кальция приводит к кристаллизации карбоната кальция:
Image

В методе скрыт парадокс: известковое молоко поставляет в жесткую воду гидроксидион, осаждающий магний. При этом к воде добавляется дополнительное количество иона кальция, осаждающего карбонатион, но загрязняющего при передозировке воду кальцием. Дозировка известкового молока становится проблемой, т. к. зависит от КЖ исходной воды (величина переменная, зависящая от углекислотного равновесия) и от ее ОЖ. Передозировка известкового молока приводит к тем же последствиям, что и недостача

Известково-содовый метод применяется для смягчения «жесткой» и «очень жесткой» воды (см. таблицу), когда общая жесткость существенно превышает карбонатную. В этом методе очистки гидроксид магния и карбонат кальция образуются по тем же ионно-молекулярным уравнениям (14) и (15). Этот метод позволяет более глубоко очистить раствор от кальция и магния, но вынуждает при этом затрачивать дорогостоящую кальцинированную соду на очистку от кальция, внесенного в раствор вместе с известковым молоком.

Image

Сложность решаемой задачи химического смягчения природного раствора от загрязняющих примесей заключается в том, что это многостадийный процесс, на каждой стадии которого протекает столько реакций (процессов), сколько в исходном растворе загрязняющих примесей. И даже больше. Естественно, что все процессы, протекающие независимо, тем не менее взаимосвязаны. При этому каждой реакции, у каждого процесса своя скорость протекания, своя температурная зависимость. Если к этому добавить, что все сведения о растворимости, влиянии температуры, константах реакций и др., приведенные в справочниках, получены в равновесных условиях и системах, состоящих, как правило, только из двух компонентов — растворителя и растворенного вещества, а на практике приходится иметь дело с принципиально неравновесными процессами и многокомпонентными растворами, то точное описание и расчет химического смягчения воды кажется в принципе невозможным.

Перечислим стадии химического смягчения воды и протекающие на каждой стадии процессы.

При добавлении к жесткой воде осадительных реагентов происходят химические реакции (14) и (15). Образование новых веществ в системе — гидроксида магния и карбоната кальция — создает пересыщение по этим веществам, запускает процессы зародышеобразования новых фаз (кристаллических гидрооксида магния, карбоната кальция) и роста образующихся кристаллов, т. е. процессы кристаллизации. Если в раствор добавляют коагулянт — соли железа или алюминия, произойдут процессы окисления двухвалентного железа до трехвалентного, гидролиза ионов с образованием гидроксидов железа или алюминия, их кристаллизация.

Как только появляется твердая поверхность, аморфная или кристаллическая, на ней адсорбируются ионы, молекулы воды и содержащиеся в растворе примеси. Образуется двойной электрический слой. Его знак и величина определяется свободной поверхностной энергией поверхности конкретной частицы, составом окружающей ее среды, концентрацией и сродством ионов и молекул к данной поверхности.

Двойной электрический слой является движущей силой процесса коагуляции. Коагуляция приводит к слипанию разнородных частиц в крупные агрегаты — флокулы. После этого суспензия, состоящая из флокул, готова к разделению на твердую и жидкую фазу, что и реализуется в гравитационном поле отстаиванием — осветлением.

Каждый из перечисленных процессов протекает со своей скоростью, по-своему реагирует на температуру. Все перечисленные процессы запускаются независимо, но взаимосвязаны через концентрацию отдельных компонентов, через балансы прихода-расхода, тепломассообмен. В результате, одним из важнейших факторов управления системой является гидродинамика — интенсивность перемешивания компонентов. Обычно на ТЭС (и на АЭС) используется технологическая схема химического смягчения воды, в которой все выше описанные многочисленные и взаимосвязанные процессы осуществляются в нижней части осветлителя — аппарата, предназначенного для гравитационного разделения твердой и жидкой фаз. Такое техническое решение очень усложняет задачу управления процессом смягчения.

На рис. 1 приведена схема установки химического смягчения воды, разработанная автором этой статьи, опытно промышленная проверка которой выполнена на Кременчугской ТЭС. Была сделана попытка разделить отдельные процессы, протекающие при химическом смягчении воды за счет удаления их из нижней части осветлителя и переноса в каскад статических реакторов-смесителей [3]. При этом были использованы некоторые технические решения, применяемые на Западе в химической промышленности и на ТЭС. Например, конструкция осветлителя, который поставляли на рынок французская фирма «DEGREMONT» и акционерное общество «ЭНСОГутцейт» (Финляндия) еще в 80х годах ХХ столетия.

Image

Поступающая на химическое смягчение вода без предварительной дегазации (насосы могут подсасывать воздух)проходит магнитогидродинамический (МГД) резонатор 6, каскад реакторов 7, в каждый из которых подается определенное количество осадительного реагента, обеспечивается определенная интенсивность перемешивания и время пребывания образующейся суспензии. Сильнокислый коагулянт — сернокислое железо — подается в последний по ходу движения жидкости реактор-смеситель. Тем самым предотвращается нецелесообразное расходование известкового молока и повышается точность дозировки коагулянта. Только при этом достигается экономия осадительных реагентов.

Образовавшаяся суспензия вместе с воздухом поступает через струйный насос 3 в камеру воздух отделения и созревания флокул 4, которая встроена в осветлитель 2. Воздух отделяется и удаляется через воздухоотделитель 1. Потоки в камере созревания флокул направлены так, что мелкие частицы в принципе не могут попасть на слив осветлителя. Крупные флокулы, накопленные в нижней части камеры созревания, создают шламовый фильтр, растут за счет мелких частиц и выводятся по мере укрупнения под действием силы тяжести в донную часть осветлителя. Накапливающийся шлам выводится самотеком в шламонакопитель. Смягченная вода, от фильтровавшись через слой крупных флокул в донной части осветлителя, поднимается к переливу в его верхней части и поступает в сборник осветленной и смягченной воды.

Такая технология позволяет увеличить производительность осветлителя в два раза, снизить расход реагентов, повысить качество очистки, уменьшить объем жидких стоков, удаляемых из химцеха ТЭС в виде шлама. Но без МГД-резонатора в голове процесса эксплуатация этой технологической схемы невозможна: кристаллизующийся карбонат кальция будет откладываться на стенках статических реакторов смесителей и трубопровода, увеличивая их гидравлическое сопротивление и затрудняя эксплуатацию.

Если из этой схемы удалить МГД-резонатор, каскад статических реакторов-смесителей и внутреннюю «начинку» осветлителя, то мы вернемся к традиционной схеме химического смягчения воды, применяемой на всех ТЭС и АЭС бывшего Советского Союза и стран СНГ. Рис. 1.


5.3. Безреагентная водоподготовка

Безреагентная водоподготовка, или магнитная обработка воды, или магнитогидродинамический резонанс известен с 1936 г. Этот метод предотвращения отложений накипи на теплообменных поверхностях без нагрева не смягчает воду, т. е. не снижает ее карбонатную и общую жесткость.

Но поскольку смягчение воды не является самоцелью и метод МГД-резонанса решает главную задачу смягчения — предотвращение карбонатных отложений, о нем не стоит забывать. Главные его преимущества — дешевизна и простота в эксплуатации. МГД-резонатор надо только смонтировать и настроить. Он не требует никаких эксплуатационных затрат.

Механизм предотвращения образования накипи на теплообменных поверхностях с помощью магнитной обработки — магнитогидродинамического резонанса — сводится к инициированию в воде структурной перестройки, фазового перехода второго рода (ФП2). В результате карбонат кальция, который обычно кристаллизуется в кристаллографической модификации кальцит, начинает кристаллизоваться в модификации арагонит. Арагонит не откладывается на теплообменных поверхностях. Более того, если отложения кальцита промыть «о магниченной водой», он переходит в арагонит, отложения разрыхляются, отслаиваются от поверхности и уносятся потоком воды.


5.4. Глубокое смягчение ионным обменом

Во многих промышленных котельных смягчение воды до норм, предъявляемых к воде теплосетей, оказывается недостаточным, если вода используется для питания котлов высокого давления, работающих при давлениях свыше70.105 Па = 70 атм. Напомним, что это соответствует температурам кипения воды свыше 285°С. В этом случае воду деминерализуют — подвергают глубокому смягчению, удаляя не только ОЖ и КЖ, но и значительную часть примесей. Давно и широко для этих целей применяется многоступенчатый ионный обмен с использованием синтетических органических катионообменных и анионообменных смол. В зависимости от приходящих с водой загрязнений и желаемого качества очищенной воды используют ионообменные смолы различного типа и в разных комбинациях.


5.4.1. Общие представления об ионообменных смолах

Промышленная деминерализация стала возможной только с развитием массового производства синтетических смол и появлением в продаже широкого ассортимента ионообменных смол.

Широко применявшиеся уже 40–50 лет назад ионообменные сорбенты — иониты — представляют собой твердые, нерастворимые, ограниченно набухающие в воде вещества. В основе этих ионообменных материалов лежит каркас (матрица), несущий положительный или отрицательный заряд, и подвижный противоион, заряд которого компенсирует заряд каркаса. Этот подвижный противоион как раз и способен извлечь из раствора ион такого же заряда и обменяться с ним. По знаку заряда обменивающихся ионов иониты делят на катиониты, аниониты и амфолиты. По химической природе каркаса — на неорганические, органические и минерально-органические. Иониты могут быть природными (например, цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, алюмогель, сульфоуголь). Наиболее важными в технологии глубокого смягчения воды в последние десятилетия следует признать синтетические ионообменные смолы, ионообменные полимеры. Ионообменные смолы могут быть сильно-, средне- и слабокислыми, а также сильно-, средне- и слабоосновными.

Ионообменные сорбенты, регенерирующиеся серной кислотой и обменивающиеся на катионы раствора, относятся к сильнокислым катионообменным смолам. Анионная смола с сильным сродством к анионам угольной и кремниевых кислот обычно называется сильноосновной анионообменной смолой.

Промышленность выпускает разновидности сильноосновных анионообменных смол с высоким сродством к анионам сильных кислот: сульфатам (SO42–), хлоридам (Cl–), нитратам (NO3–), фосфатам(PO43–) и т. д. Их называют слабоосновными анионообменными смолами.

Слабоосновные смолы не удаляют анионы угольной и кремниевых кислот, это могут делать сильноосновные смолы. Объяснение этому можно найти в разделе 3.2. Дело в том, что угольная и кремниевые кислоты относятся к очень слабодиссоциирующим веществам. Сродство к протону (Н+) у них гораздо выше, чем к органической матрице анионообменной смолы. Поэтому такие аниониты не используются поодиночке в производстве глубоко смягченной воды для котлов высокого давления. Для регенерации слабоосновных смол применяется каустик более низкой концентрации. Это позволяет регенерировать их совместно с сильноосновными смолами для повышения экономичности работы анионообменного оборудования. Слабо основная смола всегда загружается в емкость последней: в донную часть — сильноосновной анионит, над ним — слабоосновной.

Размещая слабоосновную смолу в верхней части анионообменного слоя, удается использовать ее ионообменную емкость и при этом быть уверенным, что сильноосновная смола удалит анионы угольной и кремниевых кислот. Емкости с катионитом и анионитом в технологической схеме глубокого смягчения соединены трубопроводом так, чтобы

поток из катионообменного аппарата вошел в вершину анионообменного аппарата, а выход от анионообменного аппарата направлялся в емкость смягченной воды или в аппараты тонкой очистки.

На рис. 2 представлена схема установки по глубокому смягчению (деминерализации) воды.

Image




5.4.2. Сильнокислый катионит

Сильнокислый катионит регенерируется серной кислотой (можно использовать и соляную кислоту, но окончательный выбор диктуется ценой). Когда жесткая вода проходит через аппарат, наполненный сильнокислым катионитом, водородный ион — протон, являющийся подвижным противоионом в этом виде смолы, замещается на Ca2+, Mg2+, Fe2+или Fe3+ и другие катионы, которые могут присутствовать в воде. Анионы, которые присутствуют в смягчаемой воде, с этим типом смолы не обмениваются и остаются в растворе. Протон (Н+), попадая в воду, придает ей кислую реакцию (см. раздел 3.1.), достигающую2,0–3,0 единиц pH. Поэтому аппарат, наполненный сильнокислым катионитом, соединительный трубопровод, емкости и запорную арматуру гуммируют, т. е. покрывают антикоррозионным слоем резины.

В обменных процессах играют роль два фактора:

  • концентрация обменивающегося иона, как со стороны раствора, так и со стороны смолы;

  • способность к обмену иона, присутствующего в смягчаемой воде.

По способности к обмену с сильнокислым катионитом можно выстроить катионы в следующий ряд: 1. водород; 2. кальций; 3. магний; 4. калий;5. натрий.

В принципе, просматривается закономерность — чем больше радиус иона, тем выше его способность к обмену с протоном смолы.

Если в жесткой воде одновременно присутствуют перечисленные выше ионы в одинаковых концентрациях, то в первую очередь с подвижным противоионом Н+ свежее регенерированного сильного катионита начнет обмениваться Са2+, причем каждый ион кальция заменит в катионите два иона водорода. Если концентрация Са2+ снизится до некоторого порогового предела, наступит очередь Mg2+ и какой-то период оба эти иона будут обмениваться с протоном смолы на равных. Как правило, ионообменные аппараты представляют собой вертикальный цилиндр, заполненный смолой. Вода на смягчение поступает в верхнюю часть аппарата, омывая слои смолы и постепенно освобождаясь от ионов жесткости. Если бы мы отобрали пробы воды по высоте «сверху вниз» ионообменного аппарата, заполненного сильнокислым катионитом, то наблюдали бы постепенное уменьшение в воде концентрации Са2+, затем Mg2+ и т. д., в соответствии с вышеприведенным рядом. Но при этом в растворе все время увеличивалась бы кислотность или снижался рН.

Из сказанного выше естественно вытекает и метод контроля «срабатываемости» смолы в ионообменном аппарате. Как только в воде на выходе из аппарата появятся ионы жесткости или прекратится снижение рН, его надо переключать в режим регенерации смолы.

Помня о буферности воды с карбонатной жесткостью (см. раздел 4.1.),следует отметить, что рН воды на выходе из ионообменного аппарата может и не достигать минимальных значений 3 или 2.

В воде с карбонатной жесткостью критерием окончания процесса обмена подвижных протонов смолы служит рН = 4,3 или изменение окраски индикаторов: бромфенолового синего с синей на желтую; метилового оранжевого с желтой на красную; бромкрезолового зеленого с синей на желтую.

Нельзя допускать полного истощения обменной емкости сильнокислого катионита, т. к. потребуется его двойная по продолжительности регенерация, а также потому, что в котлы высокого давления совершенно недопустимо попадание солей жесткости из-за потери контроля над качеством смягчения питательной воды.

При проектировании технологической линии по глубокому смягчению воды производительность установки рассчитывают исходя из обменной емкости анионообменной смолы. И этому есть две причины.

Первая: обменная емкость анионитов заметно ниже обменной емкости катионитов. Эта проблема в принципе решается увеличением объема и, соответственно, размера загрузки анионообменного аппарата, но такое решение возможно только в узких пределах.

Вторая: недопустимо попадание в котел высокого давления кремниевых кислот, очистку от которых обеспечивают аниониты. Хотя попадание в котел кремниевых кислот менее критично, чем попадание солей жесткости, лучше сознательно заложить в проект «резерв»по производительности установки глубокого смягчения воды, чем поставить под угрозу надежность работы котлов высокого давления.


5.4.3. Снижение щелочности

Одной из неприятных составляющих воды, используемой как источник подпитки котлов, является щелочность. Под общей щелочностью воды понимают сумму концентраций ионов CO32–, НCO3–и ОН–, т. е. всего того, что реагирует с сильной кислотой, а точнее с Н+. Особые неприятности доставляет карбонатная составляющая или карбонатная жесткость.

Как только сырая вода в технологической схеме смягчения прошла через стадию катионирования, Са2+ или Mg2+обмениваются на H+ и в потоке воды появляется слабодиссоциирующие карбонат, гидрокарбонат-ионы и угольная кислота H2CO3. Эта кислота очень неустойчива. Она быстро разлагается на диоксид углерода (CO2) и воду. По этой причине во многие технологические схемы глубокого смягчения включают аппарат, называемый декарбонизатором. Его размещают после ионообменных аппаратов, заполненных катионитом. Декарбонизатор представляет собой емкость, заполненную насадкой или кольцами Рашига на поддерживающей решетке. Поток воздуха от вентилятора, проходя через насадку, поднимается в верхнюю часть емкости —декарбонизатор. Вместе с ним из потока воды после аппарата с сильнокислым катионитом уносится и диоксид углерода. Вода после декарбонизатора обычно содержит 0,2 мг. экв/л CO2.

К водонагревателю Atlantic — фильтр в подарок!

С 12.10.2009 по 01.12.2009 каждый покупатель водонагревателя серий Atlantic Slim Steatite и Atlantic Cube Steatite получает в подарок высокопродуктивный многофункциональный фильтр GL Professional, предназначенный для защиты теплообменных поверхностей от образования накипи.

 

Фильтры GL Professional предназначены для обработки воды, поступающей на водогрейное и сантехническое оборудование. Наполнитель фильтра - ионообменная смола «Свод-АС», обработанная по запатентованной технологии. Наполнитель разработан институтом водоочистных технологий для нужд военно-промышленного комплекса и атомной энергетики. «Интеллектуальные гранулы» наполнителя хорошо работают при высоких температурах и большом водоразборе - действующее вещество точно дозируется в воду, обеспечивая высокую степень защиты поверхностей от накипи. Фильтр GL Professional устанавливается перед водогрейным оборудованием. Основная функция фильтра GL Professional - предотвращение образования накипи.

  << пред   1   2   3   4   5   6   след >>

  ARISTON    ATLANTIC    Atmor    BOSCH    Beretta    KERMI    Protherm    Sime    VAILLANT    VIADRUS    WATOMO    WOLF    Водонагреватель    КУПИТЬ КОТЕЛ КИЕВ    Киев    Осушитель воздуха    Твердотопливный котел    Термекс    бойлер    бойлер Thermor(Термор)    конвектор    кондиционер    котел    купить Atmor    купить BOSCH    купить VAILLANT (ВАЙЛАНТ)    купить водонагреватель    купить водонагреватель бойлер    купить газовую колонку    купить газовый котел PROTHERM    купить газовый настенный котел    купить конвектор    купить котел    купить котел BAXI    купить котел Beretta    купить котел Protherm    купить котел Protherm (Протерм)    купить котел SAUNIER DUVAL    купить котел Sime (Симе)    купить котел VAILLANT    купить котел VAILLANT (Вайлант)    купить насос    купить радиатор    купить радиатор стальной    купить радиатор стальной KERMI    купить твердотопливный котел    купить_газовый_котел_PROTHERM    насос    радиаторы батареи корадо купить в киеве    стальной радиатор